DLS 5.0 - The Biomechanical Effects of Dynamic Locking Screws
نویسندگان
چکیده
INTRODUCTION Indirect reduction of dia-/metaphyseal fractures with minimally invasive implant application bridges the fracture zone in order to protect the soft-tissue and blood supply. The goal of this fixation strategy is to allow stable motion at the fracture site to achieve indirect bone healing with callus formation. However, concerns have arisen that the high axial stiffness and eccentric position of locked plating constructs may suppress interfragmentary motion and callus formation, particularly under the plate. The reason for this is an asymmetric fracture movement. The biological need for sufficient callus formation and secondary bone healing is three-dimensional micro movement in the fracture zone. The DLS was designed to allow for increased fracture site motion. The purpose of the current study was to determine the biomechanical effect of the DLS_5.0. METHODS Twelve surrogate bone models were used for analyzing the characteristics of the DLS_5.0. The axial stiffness and the interfragmentary motion of locked plating constructs with DLS were compared to conventional constructs with Locking Head Screws (LS_5.0). A quasi-static axial load of 0 to 2.5 kN was applied. Relative motion was measured. RESULTS The dynamic system showed a biphasic axial stiffness distribution and provided a significant reduction of the initial axial stiffness of 74.4%. Additionally, the interfragmentary motion at the near cortex increased significantly from 0.033 mm to 0.210 mm (at 200N). CONCLUSIONS The DLS may ultimately be an improvement over the angular stable plate osteosynthesis. The advantages of the angular stability are not only preserved but even supplemented by a dynamic element which leads to homogenous fracture movement and to a potentially uniform callus distribution.
منابع مشابه
Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures.
BACKGROUND The objective of this study was to investigate the biomechanical effects of medial fracture gap augmentation in locked plating of an unstable 2-part proximal humeral fracture with calcar screws and insertion of a corticocancellous bone block. Furthermore the mechanical behavior of dynamic locking screws in the non-parallel arrangement of a proximal humeral plate was of interest. ME...
متن کاملFirst Metatarsophalangeal Joint Arthrodesis: A Retrospective Comparison of Crossed-screws, Locking and Non-Locking Plate Fixation with Lag Screw
Background:Locking plate fixation is increasingly used for first metatarsophalangeal joint (MTP-I) arthrodesis. Still there is few comparable clinical data regarding this procedure. Methods:We retrospectively evaluated 60 patients who received an arthrodesis of the MTP-I between January 2008 and June 2010. With 20 patients each we performed a locking plate fixation with lag screw, arthrodesis w...
متن کاملControlled dynamic stability as the next step in “biologic plate osteosynthesis” - a pilot prospective observational cohort study in 34 patients with distal tibia fractures
INTRODUCTION Delayed bone healing is an eminent problem in the operative treatment of distal tibia fractures. To address this problem from a biomechanical perspective, the DLS 3.7 (Dynamic Locking Screw 3.7 mm) as a new generation of locking screws has been developed. This screw enables the surgeon to control the rigidity of the plate osteosynthesis and thereby to expand clinical options in cas...
متن کاملBiomechanical comparison of axial load between cannulated locking screws and noncannulated cortical locking screws.
The goal of this study was to compare the biomechanical stability of cannulated locking screws and noncannulated cortical locking screws in a periarticular locking plate. Twelve fresh-frozen porcine tibias with a 1-cm gap created distal to the tibial plateau were used to simulate an unstable proximal tibial fracture. All specimens were fixed with a periarticular proximal lateral tibial locking ...
متن کاملDynamic-locking-screw (DLS)–leads to less secondary screw perforations in proximal humerus fractures
BACKGROUND Loss of reduction and screw perforation causes high failure rates in the treatment of proximal humerus fractures. The purpose of the present study was to evaluate the early postoperative complications using modern Dynamic Locking Screws (DLS 3.7) for plating of proximal humerus fractures. METHODS Between 03/2009 and 12/2010, 64 patients with acute proximal humerus fractures were tr...
متن کامل